POST COMPENSATED FLOW SHARING VALVE HIGH EFFICIENCY ENERGY SAVING

Connector to be ordered separately, see page 86.

ORDERING CODE

CFS

FLOW SHARING valve

3

Size

*

Mounting (see table 1)

*

Body type:

A = Ports G3/8" parallel

P = Ports G1/2" parallel

Q = Ports SAE8 3/4"-16UNF parallel

G= Interface for modular valves

**

Spool type

03 = ____

Ν

Symmetrical flow path control

*

Flow rating

*	∆p 14bar
1	8 I/min
2	18 I/min
3	25 I/min
4	40 I/min
5	55 I/min

*

Max. current at solenoid (1):

E = 2.35 A (9 Vdc) - Special coil

 $\mathbf{F} = 1.76 \text{ A} (12 \text{ Vdc})$

 $\mathbf{G} = 0.88 \, \text{A} \, (24 \, \text{Vdc})$

**

Variants (2):

\$1 = No variant

LF/LV = Emergency control lever (3)

For body type G order LR variant (emergency lever 180° rotated)

SV = Viton

ES = Emergency button (3)

P2= Rotary emergency (3)

R5 = Rotary emergency 180° (3)

AJ = AMP Junior coil (see page 91)

CZ = Deutsch DT04-2P coil (see page 91)

1

Serial No.

- (1) Coils technical data, see page 91
 - Voltage codes are not stamped on the plate, their are readable on the coils
- (2) Connector to be ordered separately, see page 86; Other variants available on request.
- (3) Emergency see page75

High efficiency energy saving valve FLOW SHARING

- High efficiency energy saving valve
- Compact dimensions
- Venting valves can be adopted to de-pilot pressure compensators on port A and/or B
- Valve's body with the same interface of all BFP bankable valves range, so can be assembled with all existings valves, precompensated (CXDH3) included
- · Cast iron zinc plated body.

HYDRAULIC SYMBOL

Max. operating pressure	310 bar
Max. operating pressure ports T (Pressure dynamic allowed for 2 millions of cycles)	250 bar
Regulated flow rate (A / B ports)	up to 35 l/min (∆p 14 bar) up a 60 l/min (∆p 18 bar)
Relative duty cycle	Continuous 100% ED
Type of protection (Hirschmann coil)	IP 65
Fluid viscosity	10 ÷ 500 mm ² /s
Fluid temperature	-20°C ÷ 75° C
Ambient temperature	-20°C ÷ 60°C
Max. contamination level	ISO 4406:1999: class 19/17/14
(filter $\beta_{10} \ge 75$)	NAS 1638: class 8
Weight with single solenoid	3.10 kg
Weight with double solenoid	3.71 kg

Solenoid	@ 9Vdc	@ 12Vdc	@ 24Vdc
Current supply	PWM (pulse width modulation)		
Max. current solenoid	2.35 A	1.76 A	0.88 A
Solenoid coil resistance at 25°C (77°F)	2.25 Ohm	4.0 Ohm	16.0 Ohm
PWM or superimposed dither frequency	100 ÷ 150 Hz		
Response time			
0 ÷ 100%	32 ms	40 ms	85 ms
100% ÷ 0	33 ms	33 ms	33 ms
Frequency response -3db (input signal 50% ±25% Vmax)	22 Hz	22 Hz	12 Hz

Operating specifications are valid for fluid with 46 mm²/s viscosity at 40°C, using the specified Brevini Fluid Power electronic control units. (input voltage = 24V).

Accessories

REM.S.RA.*.*. REM.D.RA.*.*.	Card type control for single and double solenoid	
CEP.S	Electronic amplifier plug version for signle solenoid	
MAV	Electronic module for integrate control of proportional valves and ON/OFF	
JMPEI0M700101	1700101 Joystick with standard handle	
JMPIU0M700138	00138 Joystick Person present handle	
Modular valves	CM3P (page 79) and CM3M (page 81)	

Tab.1 - Mounting

Code	Symbol
С	$\underset{a \to 1}{\overset{A_1}{\longrightarrow}} \underset{b \to 1}{\overset{A_2}{\longrightarrow}} \underset{b}{\overset{A_3}{\longrightarrow}}$
A	A O W
В	\$\times_{\rho^1 \\ \times_{\rho^1 \\ \times_{\rho} \\ \\ \times_{\rho} \\

HYDRAULIC SYMBOLS

Spool 01 mounting C-A-B

Spool 03 mounting C-A-B

CHARACTERISTIC CURVES

Q-I curves with Δp 14bar

Compensation curves

Curves	Flow
1	8 I/min
2	18 I/min
3	25 I/min
4	40 I/min
5	55 I/min

OVERALL DIMENSIONS

Body

A = Ports G3/8" parallel
P = Ports G1/2" parallel
Q = Ports SAE8 3/4"-16UNF parallel

Body type G Interface for modular valves

Fittings, max. tightening torque 60 Nm