

2/2 LOGIC ELEMENTS AND COVERS

Z/Z ZOGIO EZEMIENTO AND GOVERIO					
KEL.16/25	Ch. V PAGE 3				
KEC.16/25	Ch. V PAGE 3/6/7/8				
HYDRAULIC MOUNTING SCHEMES	S Ch. V PAGE 4				
NG16/NG25 SEATS	Ch. V PAGE 5				
KEC.16/25 WITH CMP	Ch. V PAGE 9/10				
C.*.P.16/25	Ch. V PAGE 9/11				
KRA.16/25	Ch. V PAGE 12				
KRA.16/25 + AD.3.V	Ch. V PAGE 14				
PROXIMITY FOR KRA	Ch. V page 15				

2/2 Cartridge valves logic elements according to ISO 7368 (din 24342)

ARON cartridge valves are basically composed of a cover and an operating unit insert in the ISO 7368 (DIN 24342) mounting frame. Each cartridge valve is characterized by 2 main way for the nominal flow (up to 350 l/min).

Nominal size (max. diameter) 16mm / 25mm Max. opening pressure 350 bar Max. nominal flow rate NG16 150 l/min Max. nominal flow rate NG25 350 l/min Fluid temperature -20°C \div 75°C Max. contamination level class 10 in accordance with NAS 1638 with filter $\beta_{ne} \ge 75$

By combining the various covers,

operating units and connections within the block, many different functions can be obtained like: direct control, non-return, hydraulically piloted non-return, pressure control, flow rate regulation, as well as a combination of these same functions.

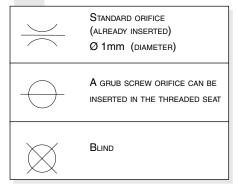
Thanks to their design features and operational flexibility, cartridge valves can be used to:

- speed-up machine cycles, and therefore increase productivity and efficiency (better response time compared to traditional valves);
- ensure minimum thermal dissipation (tanks to the passageway dimensions);
- reduce the hydraulic plant weight (tanks to the compact functions block);
- reduce to a minimum any internal leakages;
- · provide ease of installation and serving.

The logic units 2/2 (Fig. 1) are formed by a cover (1), a functional unit (2), a spacer (3), a closure spring (4) and a guide bush (5) for each functional unit. Covers can be changed according to the required application and the functional unit can be combined with different springs in order to obtain various opening pressure.

Covers

Covers serve to enclose the functional unit and to house the piloting ports and any incorporated valves or manual adjustment devices. Inside the cover are housed also the seats for the calibrated orifice used to optimize the valve opening/closed response time in according to the type of hydraulic system being implemented.


CETOP 3 interface covers are available, ready to accept solenoid valves or other modular valves for the implementation of particular control functions.

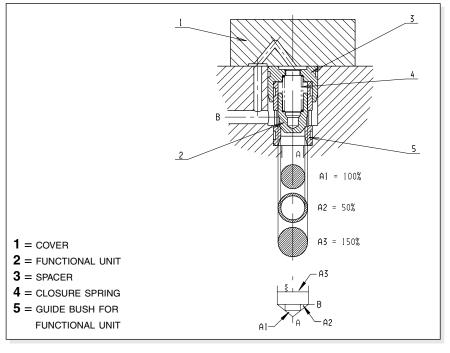

The maximum allowed pressure is a function of the flow rate (max.400 bar).

Fig. 1 - AREA RATIO

Α	Main flow
В	M AIN FLOW
X	External piloting
Z 1	External piloting
Z2	External piloting
Y	Drainage
A 1	A PORT EFFECTIVE CROSS SECTION
A2	B PORT EFFECTIVE CROSS SECTION
А3	Spring chamber effective cross section

ORIFICE FUNCTIONAL SYMBOLS

The logic unit operates as a function of the pressures acting on the relevant areas, and different opening pressures are obtained, depending on the dimensions of these areas.

A description of how to interpret the ARON cartridge opening ratios is as follows:

- there are three relevant areas A1, A2, A3;
- area A1 is taken to represent 100%, i.e. it is the reference area;
- area A2, when a 2:1 ratio is shown, is equal to 50% of area A1 and all the other ratios shown in the Table 2 can be calculated on this basis.

As consequence of these area ratios the are different opening pressures whether proceeding from A \rightarrow B or from B \rightarrow A.

ORDERING CODE

KEL

Logic element 2/2

**

16 = NG16 **25** = NG25

*

Function: see table 1

Areas ratio:

U = 1 : 1

S = 12.5 : 1

B = 2:1

(for version with drilled poppet see CF variant)

F = 2 : 1

R = 2:1

*

Opening pressure (bar) (Tab.1 pressure values) (Tab.2 spring's colour and code)

**

Calibrated orifices:

00 = blind

08 = 0.8 mm

09 = 0.9 mm

10 = 1.0 mm

12 = 1.2 mm

14 = 1.4 mm

**

00 = No variant

V1 = Viton

CF = With drilled poppet only for KEL.**.B...

2

Serial No.

TAB. 1 - SYMBOL, FUNCTION, AREA RATIO AND OPENING PRESSURE

I AB. I - SYMBOL, FUNCTION, AREA RATIO AND OPENING PRESSURE						
Function	Symbol	Area ratio	Code	Opening pressure (bar)		
				$A{ ightarrow}B$	B→A	
Directional (U) (normally used for relief valve)	\$ A3 B	A1 : A3 1 : 1	KEL.*.U.L.00 KEL.*.U.M.00 KEL.*.U.H.00 KEL.*.U.J.00	L = 0.3 M = 1.6 H = 4 J = 9		
Directional (U) with orifice	ж в ж в	A1 : A3 1 : 1	KEL.*.U.L.** KEL.*.U.M.** KEL.*.U.H.**	L = 0.3 M = 1.6 H = 4		
Directional (S)	\$ A3	A1 : A2 12.5 : 1	KEL.*.S.L.00 KEL.*.S.M.00 KEL.*.S.H.00	L = 0.3 M = 0.6 H = 1.5	L = 4 M = 8 H = 20	
Directional (S) with orifice	\$ A3 B	A1 : A2 12.5 : 1	KEL.*.S.L.** KEL.*.S.M.** KEL.*.S.H.**	L = 0.3 M = 0.6 H = 1.5	L = 4 M = 8 H= 20	
Directional (B) (normally used for check valve)	\$ A3	A1 : A2 2 : 1	KEL.*.B.L.00 KEL.*.B.M.00 KEL.*.B.H.00	L = 0.5 M = 1 H = 2.5	L = 1 M = 2 H = 5	
Flow (F) control	\$ A3 B	A1 : A2 2 : 1	KEL.*.F.L.** KEL.*.F.M.** KEL.*.F.H.**	L = 0.5 M = 1 H = 2.5	L = 1 M = 2 H = 5	
	1				\rightarrow B	
With sensitized (R) cover	₹ AP B	A1 : A2 2 : 1	KEL.*.R.L.00 KEL.*.R.M.00 KEL.*.R.H.00 KEL.*.R.J.00	NG16 L = 0.7 M = 1.5 H = 4	NG25 L = 0.6 M = 1.5 H = 3.5 J = 9	

TAB. 2 - Spring's colour and code

Spring	na U		S		B-F		R	
type	NG16	NG25	NG16	NG25	NG16	NG25	NG16	NG25
Cod. L Cod. M Cod. H Cod. J	without colour green blue without co	red yellow blue	without colour red yellow	red green yellow	without colour red green	red green yellow	without colour red green	red green yellow blue

TAB. 3 - COVERS HYDRAULIC SYMBOLS

Туре	Symbol
KEC.**.RI.**.2 Directional with external piloting	M×- ↓
KEC.**.CQ.**.2 Directional with stroke adjustment	M* Y AP
KEC.**.RC.**.2 Directional with interface NG6	P B A T W A T A T A T A T A T A T A T A T A
KEC.**.PC.**.2 With hydraulic outlet pilot valve	AP X
KEC.**.SH.**.2 With built-in-exchange valve (shuttle)	MX-1 — — — — — — — — — — — — — — — — — — —
KEC.**.SP.**.2 With built-in-exchange valve (shuttle) and interface NG6	P B A

COVERS FOR LOGIC ELEMENTS

COVERS ORDERING CODE

KEC

**

2

Covers for logic element 2/2

16 = NG16

25 = NG25

Type of cover (see Tab. 3)

RI = Directional with external piloting

CQ = Directional with stroke adjustment

RC = Directional with interface NG6

PC = With hydraulic outlet pilot valve **SH** = With built-in-exchange (shuttle)

SP = With built-in-exchange and interface NG6

00 = No variant

V1 = Viton

Serial No.

HYDRAULIC MOUNTING SCHEMES FOR KEC COVERS AND KEL LOGIC ELEMENTS KEC.16/25.RI... COVER WITH EXTERNAL PILOTING PORT KEC..RI.. KEC..RI.. $A = External piloting X allows flow in both directions A <math>\rightarrow B$ and $B \rightarrow A$. $B = For rapid sequence safety circuit; <math>A \rightarrow B$ flow is allowed; when pressure reaches X valve closes. KEL..B.. KEL..B.. Only for CF variant (KEL.**:B... with drilled poppet), with no pressure in X it operates as a check valve between A and B. KEC.16/25.CQ... COVER WITH STROKE LIMITATION KEC..CQ.. Allows flow regulation in both directions $A \rightarrow B$ and $B \rightarrow A$. By limiting the spool stroke the flow in both direction can be limited. KEL..F.. KEC.16/25.RC... COVER WITH INTERFACE NG6 AD3.... These covers have one mounting surface preset for a solenoid pilot valve. KEC..RC.. Proper connection of Y and Z2 to the A and/or B ports will allowing piloting of the valve opening and closing functions. KEL..B.. KEC.16/25.PC... COVER WITH HYDRAULIC RELEASE PILOT VALVE KEC..PC.. This is a cover with external piloting to be connected to B port to obtain the standard unit function. Z1 pressure piloting allows flow transfer from $B \rightarrow A$. Normally, in order to ensure the holding condition the main port B is connected to the load; piloting in Z1 should KEL..B.. be at least 50% of the load pressure in B. KEC.16/25.SH... COVER WITH INTEGRAL CHANGEOVER VALVE KEC..SH.. The logic element closes as function of the larger pressure in X and Z1, selected by the shuttle valve. KEL..B.. KEC16/25.SP... COVER WITH INTEGRAL CHANGEOVER VALVE AND INTERFACE NG6 AD3.... The AP branch of the cartridge valve spring is connected with the pilot valve port. KEC..SP.. External piloting operates from $Z2 \rightarrow A$ of the pilot valve. An example is shown in the diagram of a type of connection used to keep the conical seat valve closed on both sides (interrupted flow both from $A \rightarrow B$ and from $B \rightarrow A$). KEL..B.. KRA.16/25... COVER WITH ELECTRICAL CONTROL OF THE CLOSED POSITION AND INTERFACE NG6 See cartridge type KRA... next pages