
Series EH 31 6000 PSI

1) Connect the stand grounding tab to a suitable earth ground point.

Weight: approx. 7 lbs. Dimensions: inches

Pressure Filter Series EH 31 6000 PSI

Description:

The stainless steel pressure filters series EH 31 have a working pressure up to 6000 PSI. The EH-filter is inline mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to 4 $\mu m_{(c)}$.

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

1. Type index:

1.1. Complete filter: (ordering example)

EH. 31. 10VG. HR. E. P. VA. UG. 3. VA. -. AE
1 2 3 4 5 6 7 8 9 10 11 12

1 series:

EH = stainless steel-pressure filter

2 | nominal size: 31

3 | filter-material and filter-fineness:

80G, 40G, 25G, 10G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

4 | filter element collapse rating:

30 = $\Delta p \, 435 \, PSI$

HR = Δp 2320 PSI (rupture strength Δp 3625 PSI)

5 filter element design:

E = single-end open

6 sealing material:

P = Nitrile (NBR) V = Viton (FPM)

7 | filter element specification: (see catalog)

= standard

VA = stainless steel

IS06 = for HFC applications, see sheet-no. 31601

8 process connection:

UG = thread connection

NPT = thread connection according to ANSI B1.20.1

9 process connection size:

3 = -8 SAE or ½" NPT

10 filter housing specification:

VA = stainless steel

11 internal valve:

= without

S1 = with by-pass valve Δp 51 PSI

S2 = with by-pass valve Δp 102 PSI

12 clogging indicator or clogging sensor:

= without

AOR = visual, see sheet-no. 1606

AOC = visual, see sheet-no. 1606

AE = visual-electric, see sheet-no. 1615

VS5 = electronic, see sheet-no. 1619

To add an indicator to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E. 30. 10VG. HR. E. P. VA

1 series:

01E. = filter element according to company standard

2 nominal size: 30

3 - 7 | see type index-complete filter

design temperature: 14 °F to +212 °F operating temperature: 14 °F to +176 °F to +176 °F

operating medium mineral oil, other media on request

max. operating pressure: 6000 PSI test pressure: 8700 PSI

process connection: thread connection or ANSI B1.20.1

housing material: EN10088 - 1.4571 (316 Ti according to AISI)

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertical volume tank: vertical 0.03 Gal

Classified under the Pressure Equipment Directive 2014/68/EC for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EC according to specific application (see questionnaire sheet-no. 34279-4).

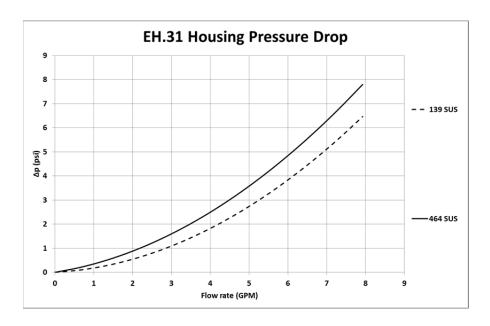
Pressure drop flow curves:

Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

 Δp assembly = Δp housing + Δp element Δp housing = (see Δp = f (Q) - characteristics)

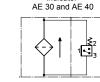
$$\Delta p_{\, element \, (PSI)} = \ Q \, \left(GPM \right) \, x \, \, \frac{{\scriptscriptstyle MSK}}{{\scriptscriptstyle 1000}} \left(\frac{{\scriptscriptstyle PSI}}{{\scriptscriptstyle GPM}} \right) x \, \, v \left(SUS \right) \, x \, \, \frac{\rho}{{\scriptscriptstyle 0.876}} \, \left(\frac{kg}{dm^3} \right)$$


For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/

Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

EH	VG						G	
	3VG	3VG 6VG 10VG 16VG 25VG				25G	40G	80G
31	12.554	8.716	5.580	4.794	3.275	0.2539	0.2369	0.1623


$\Delta p = f(Q)$ – characteristics according to ISO 3968

filter without internal valve

without indicator

with electric

indicator

with visual-electric

indicator

with visual-electric

with visual

with electronic

filter with by-pass valve

Spare parts:

item	qty.	designation	dimension	articl	e-no.
1	1	filter element	01E.90		
2	1	O-ring	11 x 3	312603 (NBR)	312727 (FPM)
3	1	O-ring	42 x 3,5	329381 (NBR)	338204 (FPM)
4	1	support ring	48 x 2,6 x 1	305	391
5	1	clogging indicator, visual	AOR or AOC	see sheet-no. 1606	
6	1	clogging indicator, visual-electric	AE	see sheet	-no. 1615
7	1	clogging sensor, electronic	VS5	see sheet	-no. 1619
8	1	O-ring	15 x 1,5	315357 (NBR)	315427 (FPM)
9	1	O-ring	22 x 2	304708 (NBR)	304721 (FPM)
10	1	O-ring	14 x 2	304342 (NBR)	304722 (FPM)
11	1	screw plug	20913-4	314	442

item 11 execution only without clogging indicator or clogging sensor

Test methods: Filter elements are tested according to the following ISO standards:

ISO 2941 Verification of collapse/burst resistance
ISO 2942 Verification of fabrication integrity
ISO 2943 Verification of material compatibility with fluids
ISO 3723 Method for end load test
ISO 3724 Verification of flow fatigue characteristics
ISO 3968 Evaluation of pressure drop versus flow characteristics
ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

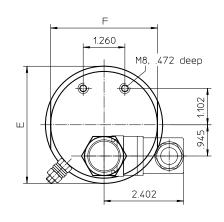
An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

China

No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

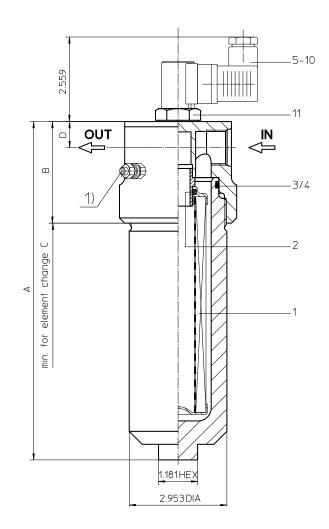
Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Tel: +65 6825-1668


Brazil

Av. Julia Gaioli, 474 – Bonsucesso 07251-500 – Guarulhos, Brazil Tel: +55 11 2465-8822 For more information, please email us at *filtration* @eaton.com or visit www.eaton.com/filtration

© 2015 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.


Series EH 60-150 6000 PSI

Dimensions:

tuno	EH 60	EH 90	EH 150
type		ЕП 90	EU 100
	- 8 SAE	-12 SAE	-16 SAE
connection	or	or	or
	NPT ½"	NPT ¾"	NPT 1"
Α	7.67	10.23	14.56
В	3.07	3.07	3.30
С	8.46	11.02	15.35
D	.78	.78	.90
E	3.54	3.54	3.74
F	3.22	3.22	3.30
weight approx.	18.70 lbs.	20.95 lbs.	27.55 lbs.
volume tank	.08 Gal.	.10 Gal.	.16 Gal.

Connection assignments as shown in the table are standard. To exchange connections see item 9 in type index.

1) Connect the stand grounding tab to a suitable earth ground point.

Dimensions: inches

Pressure Filter Series EH 60-150 6000 PSI

Description:

The stainless steel pressure filters series EH 60-150 have a working pressure up to 6000 PSI. The EH-filter is in-line mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to 4 $\mu m_{(c)}$.

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered

1. Type index:

1.1. Complete filter: (ordering example)

EH. 90. 10VG. HR. E. P. VA. UG. 4. VA. -. AE

1 series:

EH = stainless steel-pressure filter

2 | nominal size: 60, 90, 150

3 | filter-material and filter-fineness:

80G, 40G, 25G, 10G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

4 | filter element collapse rating:

30 = ∆p 435 PSI

HR = Δp 2320 PSI (rupture strength Δp 3625 PSI)

5 | filter element design:

E = single-end open

6 sealing material:

P = Nitrile (NBR) V = Viton (FPM)

7 | filter element specification: (see catalog)

= standard

VA = stainless steel

IS06 = for HFC applications, see sheet-no. 31601

8 process connection:

UG = thread connection

NPT = thread connection according to ANSI B1.20.1

9 process connection size:

3 = -8 SAE or ½" NPT

4 = -12 SAE or 3/4" NPT

5 = -16 SAE or 1 NPT

10 | filter housing specification: (see catalog)

VA = stainless steel

11 internal valve:

- = without

S1 = with by-pass valve Δp 51 PSI

S2 = with by-pass valve ∆p 102 PSI

R = with reversing valve, Q ≤ 55.75 GPM

12 clogging indicator or clogging sensor:

= without

AOR = visual, see sheet-no. 1606

AOC = visual, see sheet-no. 1606

AE = visual-electric, see sheet-no. 1615

VS5 = electronic, see sheet-no. 1619

To add an indicator to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

1.2. Filter element: (ordering example)

01E. 90. 10VG. HR. E. P. VA1
2
3
4
5
6
7

1 series:

01E. = filter element according to company standard

2 | nominal size: 60, 90, 150

3 - 7 see type index-complete filter

design temperature: 14 °F to +212 °F operating temperature: 14 °F to +176 °F

operating medium mineral oil, other media on request

max. operating pressure: 6000 PSI test pressure: 8700 PSI

process connection: thread connection or ANSI B1.20.1

housing material: EN10088 - 1.4571 (316 Ti according to AISI)

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertica

Classified under the Pressure Equipment Directive 2014/68/EC for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EC according to specific application (see questionnaire sheet-no. 34279-4).

Pressure drop flow curves:

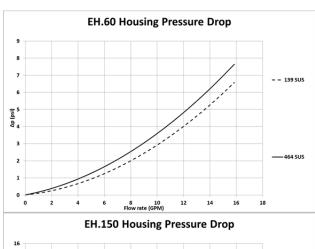
Filter calculation/sizing

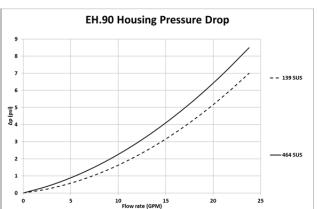
The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

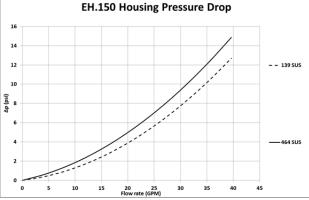
 Δp assembly = Δp housing + Δp element

 $\Delta p_{housing} = (\text{see } \Delta p = f(Q) - characteristics})$

$$\varDelta p_{\, \textit{element}} \, (\textit{PSI}) = \ \, Q \, \left(\textit{GPM} \right) \, x \, \, \frac{\textit{MSK}}{1000} \, \left(\frac{\textit{PSI}}{\textit{GPM}} \right) x \, \, \nu \left(\textit{SUS} \right) \, x \, \, \frac{\rho}{0.876} \, \left(\frac{kg}{dm^3} \right)$$


For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/


Material gradient coefficients (MSK) for filter elements


The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

EH		VG					G		
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G	
60	6.748	4.685	2.999	2.577	1.760	0.2002	0.1868	0.1280	
90	4.059	2.818	1.804	1.550	1.059	0.1210	0.1130	0.0774	
150	2.422	1.681	1.076	0.925	0.632	0.0723	0.0675	0.0462	

$\Delta p = f(Q)$ – characteristics according to ISO 3968

without indicator

with electric indicator AE 30 and AE 40

with visual-electric with visual-electric indicator AE 50 and AE 62 AE 70 and AE 80

indicator

with visual AOR/AOC

with electronic clogging sensor VS5

filter with by-pass valve

filter without internal valve

filter with reversing valve

Spare parts:

item	qty.	designation		dimension		article-no.			
			EH 60	EH 60 EH 90 EH 150					
1	1	filer element	01E.60	01E.60 01E.90 01E.150					
2	1	O-ring		22 x 3,5		304341 (NBR)	304392 (FPM)		
3	1	O-ring		56 x 3		305072 (NBR)	305322 (FPM)		
4	1	support ring		63 x 2,6 x 1			63 x 2,6 x 1 312309		2309
5	1	clogging indicator, visual		AOR or AOC		see sheet no. 1606			
6	1	clogging indicator, visual-electric		AE		see sheet no. 1615			
7	1	clogging sensor, electronic		VS5		see shee	t no. 1619		
8	1	O-ring		15 x 1,5		315357 (NBR)	315427 (FPM)		
9	1	O-ring		22 x 2			304721 (FPM)		
10	1	O-ring		14 x 2			304722 (FPM)		
11	1	screw plug		20913-4			314442		

item 11 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

ISO 2941	Verification of collapse/burst resistance
ISO 2942	Verification of fabrication integrity

ISO 2943 Verification of material compatibility with fluids

ISO 3723 Method for end load test

ISO 3724 Verification of flow fatigue characteristics

ISO 3968 Evaluation of pressure drop versus flow characteristics ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

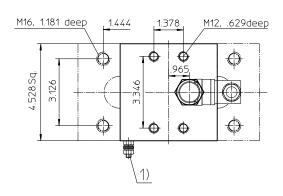
No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

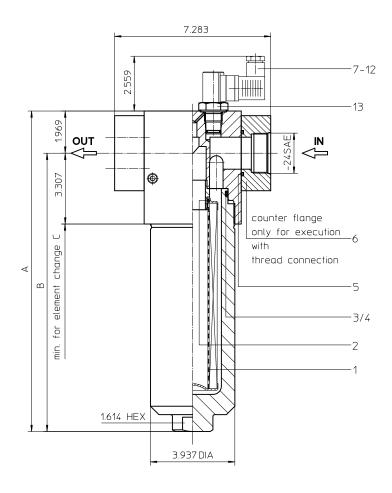
Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Tel: +65 6825-1668

Av. Julia Gaioli, 474 - Bonsucesso 07251-500 - Guarulhos, Brazil

Tel: +55 11 2465-8822


For more information, please email us at filtration@eaton.com or visit www.eaton.com/filtration


© 2015 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exception conditions or circumstances exist or because of applicable laws or government regulations.

Series EH 240-450 6000 PSI

delineation without counter flange

Dimensions:

type	EH 240	EH 450		
	-24	SAE		
connection		or		
	SAE 1 ½"			
Α	14.96	22.24		
В	12.90	20.27		
С	12.59	19.68		
weight approx.	48 lbs.	66 lbs.		
volume tank	.22 Gal.	.40 Gal.		

1) Connect the stand grounding tab to a suitable earth ground point.

Dimensions: inches

Pressure Filter Series EH 240-450 6000 PSI

Description:

The stainless steel pressure filters series EH 240-450 have a working pressure up to 6000 PSI. The EH-filter is in-line mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to 4 µm_(c).

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Eaton filter elements are available up to a pressure resistance of ∆p 2320 PSI and a rupture strength of∆p 3625 PSI.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered

1. Type index:

1.1. Complete filter: (ordering example)

EH. 240. 10VG. HR. E. P. VA. FS. 7. VA. -. AE 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |

1 series:

EΗ = stainless steel-pressure filter

2 | nominal size: 240, 450

3 | filter-material and filter-fineness:

80G, 40G, 25G, 10G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass

4 filter element collapse rating:

= Δp 435 PSI

= Δp 2320 PSI (rupture strength Δp 3625 PSI)

5 | filter element design:

Ε = single-end open

6 sealing material:

= Nitrile (NBR) = Viton (FPM)

7 | filter element specification: (see catalog)

= standard

stainless steel

IS06 = for HFC applications, see sheet-no. 31601

8 process connection:

UG = thread connection

= SAE-flange 6000 PSI FS 9 process connection size:

7 = 1 1/2"

10 filter housing specification:

VA stainless steel

11 internal valve:

= without

S1 = with by-pass valve Δp 51 PSI

= with by-pass valve Δp 102 PSI

= with reversing valve, Q ≤ 55.75 GPM

12 clogging indicator or clogging sensor:

= without

AOR = visual, see sheet-no. 1606

AOC = visual, see sheet-no. 1606

= visual-electric, see sheet-no. 1615

VS5 = electronic, see sheet-no. 1619

To add an indicator to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code

1.2. Filter element: (ordering example)

01E. 240. 10VG. HR. E. P. VA

1 2 3 4 5 6 7

1 series:

01E. = filter element according to company standard

2 | nominal size: 240, 450

3 - 7 see type index-complete filter

design temperature: 14 °F to +212 °F operating temperature: 14 °F to +176 °F

operating medium mineral oil, other media on request

max. operating pressure: 6000 PSI test pressure: 8700 PSI

process connection: thread connection or SAE-flange 6000 PSI housing material: EN10088 - 1.4571 (316 Ti according to AISI)

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertical

Classified under the Pressure Equipment Directive 2014/68/EC for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EC according to specific application (see questionnaire sheet-no. 34279-4).

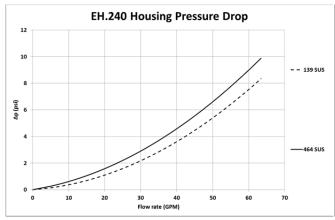
Pressure drop flow curves:

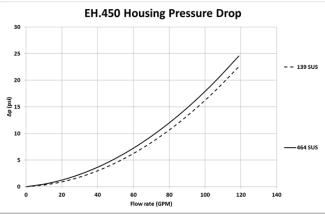
Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\Delta p$$
 assembly = Δp housing + Δp element Δp housing = (see Δp = f (Q) - characteristics)

$$\Delta p_{element}(PSI) = Q (GPM) x \frac{MSK}{1000} (\frac{PSI}{GPM}) x v(SUS) x \frac{\rho}{0.876} (\frac{kg}{dm^3})$$


For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/


Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

EH		VG					G		
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G	
240	2.092	1.452	0.930	0.799	0.546	0.0651	0.0607	0.0416	
450	1.126	0.782	0.500	0.430	0.294	0.0349	0.0326	0.0223	

$\Delta p = f(Q)$ – characteristics according to ISO 3968

without indicator

with electric indicator AE 30 and AE 40

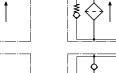
1

with visual-electric indicator
AE 50 and AE 62

with visual-electric indicator AE 70 and AE 80

with visual indicator AOR/AOC

℄



with electronic clogging sensor VS5

filter without

Spare parts:

filter with reversing valve

item	qty.	designation	dim	nension	artic	e-no.
			EH 240	EH 450		
1	1	filter element	01E.240	01E.450		
2	1	O-ring	34	x 3,5	304338 (NBR)	304730 (FPM)
3	1	O-ring	7	6 x 4	305599 (NBR)	310291 (FPM)
4	1	support ring	84 x	84 x 3,2 x 1,5		307
5	2	O-ring (only with counter flange)	47,2	47,22 x 3,53		310269 (FPM)
6	2	counter flange 6000 PSI	SA	E 1 ½"	322274	
7	1	clogging indicator, visual	AOR	or AOC	see sheet no. 1606	
8	1	clogging indicator, visual-electric		AE	see shee	t no. 1615
9	1	clogging sensor, electronic	,	VS5	see shee	t no. 1619
10	1	O-ring	15	5 x 1,5	315357 (NBR)	315427 (FPM)
11	1	O-ring	2	22 x 2		304721 (FPM)
12	1	O-ring	1	14 x 2		304722 (FPM)
13	1	screw plug	20	913-4	314	442

item 13 execution only without clogging indicator or clogging sensor

Test methods:

Filter elements are tested according to the following ISO standards:

ISO 2941 Verification of collapse/burst resistance
 ISO 2942 Verification of fabrication integrity
 ISO 2943 Verification of material compatibility with fluids

ISO 3723 Method for end load test ISO 3724 Verification of flow fatigue characteristics

ISO 3968 Evaluation of pressure drop versus flow characteristics ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

China

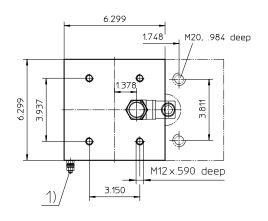
No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

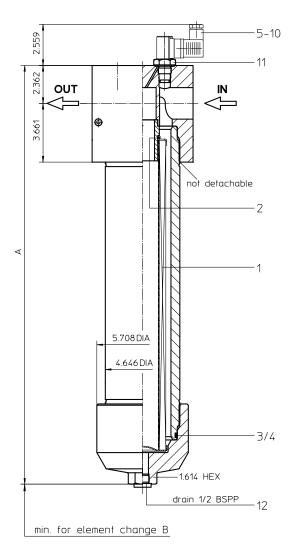
Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Tel: +65 6825-1668

Brazil

Av. Julia Gaioli, 474 – Bonsucesso 07251-500 – Guarulhos, Brazil


Tel: +55 11 2465-8822


For more information, please email us at *filtration*@eaton.com or visit www.eaton.com/filtration

© 2015 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

Series EH 601-1351 4568 PSI

Dimensions:

type	EH 601	EH 901	EH 1351			
connection	SAE 2"					
Α	20.47	23.37	36.14			
В	12.20	18.11	27.95			
weight approx.	108 lbs.	123 lbs.	150 lbs.			
volume tank	.55 Gal.	.82 Gal.	1.21 Gal.			

1) Connect the stand grounding tab to a suitable earth ground point.

Dimensions: inches

Pressure Filter Series EH 601-1351 4568 PSI

Description:

The stainless steel pressure filters series EH 601-1351 have a working pressure up to 4568 PSI. The EH-filter is in-line mounted.

The filter element consists of star-shaped, pleated filter material, which is supported on the inside by a perforated core tube and is bonded to the end caps with a high-quality adhesive. The flow direction is from outside to inside. Filter elements are available down to $4 \mu m_{(c)}$.

Eaton filter elements are known for high intrinsic stability and an excellent filtration capability, a high dirt-retaining capacity and a long service life.

Eaton filter elements can be used for petroleum-based fluids, HW emulsions, water glycols, most synthetic fluids and lubrication fluids. Consult factory for specific fluid applications.

Eaton filter elements are available up to a pressure resistance of Δp 2320 PSI and a rupture strength of Δp 3625 PSI.

The internal valve is integrated into the filter head. After reaching the bypass pressure setting, the bypass valve will send unfiltered partial flow around the filter.

The reversing valve provides another level of protection for the filter element. The reverse flow will not be filtered.

1. Type index:

1.1. Complete filter: (ordering example)

EH. 901. 10VG. HR. E. P. VA. FS. 8. VA. -. AE 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 series: EΗ = stainless steel-pressure filter 2 | nominal size: 601, 901, 1351 3 | filter-material and filter-fineness: 80G, 40G, 25G, 10G stainless steel wire mesh 25VG, 16VG, 10VG, 6VG, 3VG microglass 4 | filter element collapse rating: = Ap 435 PSI = Δp 2320 PSI (rupture strength Δp 3625 PSI) 5 filter element design: Ε = single-end open 6 sealing material: = Nitrile (NBR) = Viton (FPM) 7 | filter element specification: (see catalog) = standard stainless steel IS06 = for HFC applications, see sheet-no. 31601 8 process connection: = SAE-flange 6000 PSI 9 process connection size: = 2" 8 10 filter housing specification: VA = stainless steel 11 internal valve: = without S1 = with by-pass valve ∆p 51 PSI S2 = with by-pass valve Δp 102 PSI = with reversing valve, Q \leq 122.94 GPM 12 | clogging indicator or clogging sensor: = without AOR = visual, see sheet-no. 1606 AOC = visual, see sheet-no. 1606 = visual-electric, see sheet-no. 1615

To add an indicator to your filter, use the corresponding indicator data sheet to find the indicator details and add them to the filter assembly model code.

VS5 = electronic, see sheet-no. 1619

.

design temperature: 14 °F to +212 °F operating temperature: 14 °F to +176 °F

operating medium mineral oil, other media on request

max. operating pressure: 4568 PSI test pressure: 6525 PSI

process connection: SAE-flange 6000 PSI

housing material: EN10088 - 1.4571 (316 Ti according to AISI)

sealing material: Nitrile (NBR) or Viton (FPM), other materials on request

installation position: vertica

Classified under the Pressure Equipment Directive 2014/68/EC for mineral oil (fluid group 2), Article 4, Para. 3. Classified under ATEX Directive 2014/34/EC according to specific application (see questionnaire sheet-no. 34279-4).

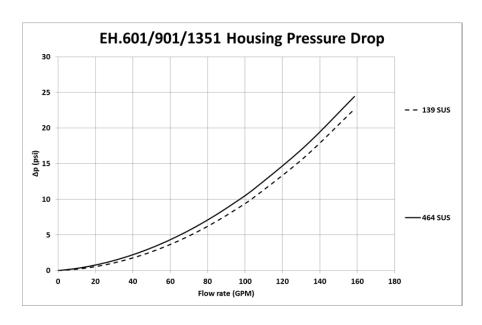
Pressure drop flow curves:

Filter calculation/sizing

The pressure drop of the assembly at a given flow rate Q is the sum of the housing Δp and the element Δp and is calculated as follows:

$$\Delta p$$
 assembly = Δp housing + Δp element Δp housing = (see Δp = f (Q) - characteristics)

$$\Delta p_{element}(PSI) = Q (GPM) x \frac{MSK}{1000} \left(\frac{PSI}{GPM}\right) x v(SUS) x \frac{\rho}{0.876} \left(\frac{kg}{dm^3}\right)$$


For ease of calculation our Filter Selection tool is available online at www.eatonpowersource.com/calculators/filtration/

Material gradient coefficients (MSK) for filter elements

The material gradient coefficients in psi/gpm apply to mineral oil (HLP) with a density of 0.876 kg/dm³ and a kinematic viscosity of 139 SUS (30 mm²/s). The pressure drop changes proportionally to the change in kinematic viscosity and density.

EH			VG	G				
	3VG	6VG	10VG	16VG	25VG	25G	40G	80G
601	0.963	0.669	0.428	0.368	0.251	0.0303	0.0282	0.0193
901	0.668	0.464	0.297	0.225	0.174	0.0189	0.0177	0.0121
1351	0.417	0.290	0.185	0.185	0.109	0.0122	0.0114	0.0078

$\Delta p = f(Q) - characteristics according to ISO 3968$

without indicator

1

with electric

indicator

with visual-electric

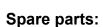
with visual-electric indicator AE 70 and AE 80

with visual with electronic indicator clogging sensor AOR/AOC VS5

℄

filter with by-pass valve

filter without internal valve



1**≤**2

filter with reversing valve

item	qty.	designation		dimension		artic	e-no.	
			EH 601	EH 901	EH 1351			
1	1	filer element	01E.600	01E.900	01E.1350			
2	1	O-ring		48 x 3		304357 (NBR)	304404 (FPM)	
3	1	O-ring		98 x 4		301914 (NBR)	304765 (FPM)	
4	1	support ring		110 x 3,5 x 2			304802	
5	1	clogging indicator, visual		AOR or AOC		see sheet no. 1606		
6	1	clogging indicator, visual-electrical		AE		see sheet no. 1615		
7	1	clogging sensor, electronical		VS1		see shee	t no. 1617	
8	1	O-ring		15 x 1,5		315357 (NBR)	315427 (FPM)	
9	1	O-ring		22 x 2		304708 (NBR)	304721 (FPM)	
10	1	O-ring	14 x 2			304342 (NBR)	304722 (FPM)	
11	1	screw plug	20913-4			20913-4 314442		442
12	1	screw plug	½ BSPP			306966		

item 11 execution only without clogging indicator or clogging sensor

Test methods: Filter elements are tested according to the following ISO standards:

ISO 2941 Verification of collapse/burst resistance
ISO 2942 Verification of fabrication integrity
ISO 2943 Verification of material compatibility with fluids
ISO 3723 Method for end load test
ISO 3724 Verification of flow fatigue characteristics

ISO 3968 Evaluation of pressure drop versus flow characteristics ISO 16889 Multi-pass method for evaluating filtration performance

North America

44 Apple Street Tinton Falls, NJ 07724 Toll Free: 800 656-3344 (North America only) Tel: +1 732 212-4700

Europe/Africa/Middle East

Auf der Heide 2 53947 Nettersheim, Germany Tel: +49 2486 809-0

Friedensstraße 41 68804 Altlußheim, Germany Tel: +49 6205 2094-0

An den Nahewiesen 24 55450 Langenlonsheim, Germany Tel: +49 6704 204-0

China

No. 3, Lane 280, Linhong Road Changning District, 200335 Shanghai, P.R. China Tel: +86 21 5200-0099

Singapore

4 Loyang Lane #04-01/02 Singapore 508914 Tel: +65 6825-1668

Brazil

Av. Julia Gaioli, 474 – Bonsucesso 07251-500 – Guarulhos, Brazil Tel: +55 11 2465-8822

For more information, please email us at *filtration* @eaton.com or visit www.eaton.com/filtration

© 2015 Eaton. All rights reserved. All trademarks and registered trademarks are the property of their respective owners. All information and recommendations appearing in this brochure concerning the use of products described herein are based on tests believed to be reliable. However, it is the user's responsibility to determine the suitability for his own use of such products. Since the actual use by others is beyond our control, no guarantee, expressed or implied, is made by Eaton as to the effects of such use or the results to be obtained. Eaton assumes no liability arising out of the use by others of such products. Nor is the information herein to be construed as absolutely complete, since additional information may be necessary or desirable when particular or exceptional conditions or circumstances exist or because of applicable laws or government regulations.

