FZP general information

Description

Technical data

Stainless	steel	hiah	pressure	filters
-----------	-------	------	----------	---------

In-line

Maximum working pressure up to 42 Mpa (420 bar) Flow rate up to 160 l/min

FZP is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1 1/4" female threaded connections, for a maximum flow rate of 160 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZP filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]			Volumes [dm ³]						
	Length					Length				
FZP 039		-	4.5	5.1	5.6		-	0.19	0.26	0.34
FZP 136		8.3	10.2	11.5	-		0.45	0.78	1.00	-

GENERAL INFORMATION FZP

FILTER ASSEMBLY SIZING

Flow rates [l/min]

			Filter elem	ent design	- R Series			Filter eleme	ent design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	43	50	59	19	23	41	45	55
FZP 039	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78
	1	63	67	102	108	136	47	53	87	89	127
FZP 136	2	95	100	122	123	159	81	95	113	115	138
	3	122	124	148	150	160	106	116	135	141	151

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

FZP fzpo39

			COMPLETE	FILTER										
Serie	es and size	C	Configuration example	: FZP039	2] E	3	F	E	3	2	A03	UP	01
FZPC	039													\Box
	41-													
Leng														
	3 4													
Valv	es													
S	Without bypass													
В	With bypass 6 bar													
Т	With check valve, without bypass													
D	With check valve, with bypass 6 bar													
V	With reverse flow, without bypass													
Z	With reverse flow, with bypass 6 bar													
Soal														
	NBR													
v	FPM													
F	MFQ													
_														
Conr	nections													
<u>A</u>	G 1/2"													
B	1/2" NPI													
C	SAE 8 - 3/4" - 16 UNF													
Conr	nections for differential indicators													
1	Without connection													
2	With connection													
F :14														
A02	ation rating (filter media)													
AU3	Inorganic microfiber 6 um													
AU0 A10	Inorganic microfiber 10 um							Value						
A10 A16		Ele	ment Ap			S	В	valves	j)	V .7	Exe	cution		
A10	Inorganic microfiber 25 um	R	20 bar			-	•	- (,	- •	P01	MP F	iltri standa	urd
ALJ		S	210 bar			•	-	•	. ,	• -	Pxx	Custo	mized	
		U	210 bar, stainle	ess steel filter e	element	•	•	•		• •	,			

EL	TER	FI FM	IENT

Element series and size	Configuration exam	ple: HP039	2 A)3 F U P()1
HP039					
Element length					
2 3 4					
Filtration rating (filter media)					
A03 Inorganic microfiber 3 µm					
A06 Inorganic microfiber 6 µm					
A10 Inorganic microfiber 10 µm					
A16 Inorganic microfiber 16 µm					
A25 Inorganic microfiber 25 µm					
		Valves			
Seals	Element ∆p	S B T D	VZ	Execution	
A NBR	R 20 bar	- • - •	- •	P01 MP Filtri standar	d
V FPM	S 210 bar	• - • -	• -	Pxx Customized	
F MFQ	U 210 bar, stainless steel filter element	• • • •	• •		

	CLOGGING INDICATORS See page 687							
DEX	Electrical differential indicator	DVY	Visual differential indicator					
DLX	Electrical / visual differential indicator	X2	Plug					
DVX	Visual differential indicator							

IN-LINE

FZP039 FZP

Designation & Ordering code

ZP FZP136

		COMPLETE	FILTER									
Serie	s and size	Configuration example:	FZP136	1	В	Α	В	6	A03	R	PO)1
FZP1	36											
Long	th											
1 Leng												
<u> </u>												
Вура	ss valve											
S	Without bypass											
В	With bypass 6 bar											
Seals	3											
Α	NBR											
V	FPM											
F	MFQ											
Conn	ections											
A												
В	3/4" NPT											
C	SAE 12 - 1 1/16" - 12 UN											
D	G 1"											
Ε	1" NPT											
F	SAE 16 - 1 5/16" - 12 UN											
G	G 1 1/4"											
H	1 1/4" NPT											
I	SAE 20 - 1 5/8" - 12 UN											
Conn	ections for differential indicators											
1	Without connection											
6	With two connections on both sides											
Filter	tion waters (filter modia)											
	Inorganic microfiber 3 um											
A05	Inorganic microfiber 6 um											
Δ10	Inorganic microfiber 10 um											
A16	Inorganic microfiber 16 µm						Valves					
A25	Inorganic microfiber 25 µm	Elemen	it ∆p				S B		xecutio	n D Filler	و به او سر ما	
		K C	20 Dar				- •	<u> </u>		r Filtri :	standar	<u>a</u>
		<u>5 2</u>	10 bar atain	ana ataa	l filtor o	lomont	• -	_ <u></u>	XX UL	ISTOLLIZ	eu	
		<u>U</u> 2	TU Dar, staini	ess stee	i iliter e	iement	• •					

U 210 bar, stainless steel filter element	٠	
--	---	--

	FIL	TER ELEMENT				
Element series and size		Configura	tion example: HP135	1 A)3	A R P01
HP135						
Element length						
1 2 3	-					
Eiltration rating (filter modia)	1					
A03 Inorganic microfiber 3 µm					l	
A06 Inorganic microfiber 6 µm						
A10 Inorganic microfiber 10 µm						
A16 Inorganic microfiber 16 µm						
A25 Inorganic microfiber 25 µm				Valves		
	Seals	Element Δ p		S B	Execu	ution
	A NBR	R 20 bar		- •	P01	MP Filtri standard
	V FPM	S 210 bar		• -	Pxx	Customized
	F MFQ	U 210 bar, stain	ess steel filter element	• •		

	CLOGGING INI	DICATO	RS	See page 683
DEX	Electrical differential indicator	DVY	Visual differential indicator	
DLX	Electrical / visual differential indicator	X2	Plug	
DVX	Visual differential indicator			

IN-LINE

FZP136 FZP

FZP	FZP136						
Filter	H						
length	[mm]						
1	222						
2	335						
3	410						
Connections	R						
Α	M10						
B - C	3/8" UNC						
D	M10						
E-F	3/8" UNC						
G	M10						
H - I	3/8" UNC						

FZP SPARE PARTS

Order number for spare parts

GENERAL INFORMATION

Description

Stainless steel high pressure filters

Technical data

In-line Maximum working pressure up to 80 Mpa (700 bar) Flow rate up to 80 l/min FZH is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions. They are directly connected to the lines of the system through the hydraulic fittings. Available features: - 1/2" female threaded connections, for a maximum flow rate of 80 l/min	 Head: AISI 316L Housing: AISI 316L Bypass valve: AISI 316L Seals Standard NBR series A (-25 °C to +110 °C) Optional FPM series V (-20 °C to +120 °C) Optional MFQ series F (-50 °C to +120 °C) 	Fluid flow throug Microfibre filter e Element serie - End cap: Po - Core tube: T - External/Inte - Media/Supp Microfibre filter e Element serie - End cap: Tir - Core tube: T - External sup - Internal sup
 High collapse filter element "H", for use with filters not provided with bypass valve Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve High collapse filter element "U", for use with aggressive fluids Visual, electrical and electronic differential clogging indicators Off-shore equipment Water filtration systems Systems with strong or corrosive environmental conditions Systems with corrosive fluids 	Note FZH filters are provided for vertical mounting	- Core tube: S - External sup - Internal sup - Media/Supp

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]							Volumes [dr	n³]		
	Length						Length				
FZH 012		2.1	2.2	2.7	3.3			0.10	0.12	0.15	0.20
FZH 040		-	4.5	5.1	5.6			-	0.19	0.26	0.34

∆p element type

h the filter element from OUT to IN

elements - series N-R: 20 bar.

- es "N R":
- lyamide Finned steel
- ernal support: Wire mesh Epox painted
- port/Pre-filter: Microfibre/Syntetic

elements - series H-S: 210 bar. es "H - S":

- nned steel
- Finned steel
- oport: Wire mesh Epox painted
- port: Wire mesh Stainless steel
- oort/Pre-filter: Microfibre/Syntetic

licrofibre filter elements

- es "U":
- ainless steel
- Stainless steel
- port: Stainless steel
- port: Stainless steel
- oort/Pre-filter: Microfibre/Syntetic

GENERAL INFORMATION \square

FILTER ASSEMBLY SIZING

Flow rates [l/min]

			Filter elem	ent design	- R Series			Filter eleme	nt design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	1	4	6	8	9	11	3	5	6	7	9
E7H 012	2	7	9	17	20	26	5	7	14	17	23
1211012	3	11	14	25	27	32	11	14	24	27	32
	4	17	20	29	31	34	13	16	26	29	33
	2	19	25	43	50	59	19	23	41	45	55
FZH 040	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop

Filter housings ∆p pressure drop FZH 012 FZH 040 2.1 1.2 -7H 010 1.4 1.8 Δp bar Δp bar 0.7 0.4 F7H 01 0 0 0 20 30 40 50 0 16 32 48 64 80 10 Flow rate I/min Flow rate I/min

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Ap varies proportionally with density.

Designation & Ordering code

FZH FZH012

	COMPLETE I	FILTER								
Filter Series and size	Configuration example:	FZH012	2	B	F	В	2	A03	U	P01
F7H012	configuration of ampion				Ť		\square			
Filter length										
1 2 3 4										
Malaan										
Valves										
B With bypass 6 bar										
B With success flow without humans										
V With reverse flow, without bypass										
Z With reverse flow, with bypass 6 bar										
Soale										
A NBR										
V EPM										
E MEO										
Connections										
A G 1/4"										
B 1/4" NPT										
C SAE 5 - 1/2" - 20 UNF										
D G 3/8"										
E 3/8" NPT										
F SAE 6 - 9/16" - 18 UNF										
Connection for differential indicator										
I Without connection Q With connection										
2 With connection										
Filtration rating (filter media)					Valve	s				
A03 Inorganic microfiber 3 µm	Element ∆p	1		S	B	VZ	Ex	ecution		
A06 Inorganic microfiber 6 µm	N 20 bar			-	•	- •	P0	1 MP Fi	ltri stand	lard
A10 Inorganic microfiber 10 µm	H 210 bar			•	-	• -	Px	x Custo	mized	
A16 Inorganic microfiber 16 µm	U 210 bar, sta	inless steel f	ilter elen	nent •	•	• •	_			
A25 Inorganic microfiber 25 μm										

				FILTER EI	LEMENT									
Eleme	ent series and size				Confi	guration example:	HP01	1	2		A03	F] U	P01
Eleme 1	ent length 2 3 4													
Filtrat	tion rating (filter media)													
A03	Inorganic microfiber	3 µm												
A06	Inorganic microfiber	6 µm												
A10	Inorganic microfiber	10 µm												
A16	Inorganic microfiber	16 µm												
A25	Inorganic microfiber	25 µm												
								Valve	s					
Seals			Eler	nent ∆p			S	B	V	Ζ	Exec	cution	E:Hai	ata a da ad
Α	NBR		 N	20 bar			-	•	-	•	PUT	IVIP	Flitri	standard
V	FPM		Н	210 bar			•	-	•	-	Pxx	Cus	tomiz	ed
F	MFQ		 U	210 bar, :	stainless ste	el filter element	•	•	•	•				

	CLOGGI	ING INDICATO	IRS	See page 687
DEZ	Electrical differential indicator	DVZ	Visual differential indicator	
X3	Plug			

FZH012 FZH

FZH012									
Filter	H								
lengtn	[mm] 02								
2	104								
3	154								
4	204								
Connections	R								
Α	M6								
B - C	1/4" UNC								
D	M6								
E - F	1/4" UNC								

FZH FZH040

	COMPLET	FILTER								
Filter Series and size	Configuration exampl	e: FZH040	2 1			Α	2	A03	S	P01
FZH040										
	-									
Filter length										
2 3 4	-									
Valves										
S Without bypass										
B With bypass 6 bar	-									
T With check valve, without bypass	-									
D With check valve, with bypass 6 bar	-									
V With reverse flow, without bypass	-									
Z With reverse flow, with bypass 6 bar	-									
	-									
Seals										
A NBR F MFQ										
V FPM										
Connections										
A G 1/2"										
$\frac{\mathbf{B}}{\mathbf{B}} = \frac{1}{2} \frac{1}$										
U SAE 8 - 3/4 - 16 UNF										
Connection for differential indicator										
2 With connection										
Filtration rating (filter media)										
A03 Inorganic microfiber 3 um										
A06 Inorganic microfiber 6 µm										
A10 Inorganic microfiber 10 µm				Values						
A16 Inorganic microfiber 16 µm	Element Ap		S B	T D	V	Ζ	Ex	ecution		
A25 Inorganic microfiber 25 μm	R 20 bar		- •	- •	-	•	PO	1 MP	Filtri sta	ndard
	S 210 bar		• -	• -	•	-	Px	x Cus	tomized	
	U 210 bar, stainless st	eel filter eleme	ent • •	• •	•	•				

FILTER ELEMENT

Elem	ent series and size		Configuration example: HP039 2 A03 A S P	01
HP03	9			
Elem	ent lenath			
2	3 4			
Filtra	tion rating (filter media)			
A03	Inorganic microfiber	3 µm		
A06	Inorganic microfiber	6 µm		
A10	Inorganic microfiber	10 µm		
A16	Inorganic microfiber	16 µm		
A25	Inorganic microfiber	25 µm		
		Г		
			Valves	
	Seals	· ·	Element ∆p S B T D V Z Execution	
	A NBR	E EPDM	R 20 bar - • - • • PO1 MP Filtri standa	ď
	V FPM	F MFQ	S 210 bar • - • - Pxx Customized	
			U 210 bar, stainless steel filter element • • • • • •	

	CLOG	GING INDICATORS	See page 687
DEZ	Electrical differential indicator	DVZ Visual differential indicator	
X3	Plug		

FZH SPARE PARTS

Order number for spare parts

FZH 012		FZH 040	
30 3e	a) b) ac 2)	FZH 040	
Q.ty: 1 pc. Item: 2 Filter Filter series element FZH 012 See order FZH 040 table	Q.ty: 1 pc. 3 (3a ÷ 3e) Seal Kit code number NBR FPM 02050856 02050857 02050860 02050861	Q.ty: 1 pc. 4 Indicator connection plug NBR FPM X2H X2V	

FZX general information

Description

Technical data

In-line

Maximum working pressure up to 100 Mpa (1000 bar) Flow rate up to 10 l/min

FZX is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 10 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- High collapse filter element "H", for use with filters not provided with bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions

- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZX filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN Microfibre filter elements - series H: 210 bar.

Element series "H":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- Element series U :
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
 Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]				Weights [kg] Volumes [dm ³]							
	Length						Length					
FZX 011		-	-	6.5	-			-	-	0.15	-	

GENERAL INFORMATION FZX

FILTER ASSEMBLY SIZING

Flow rates [l/min]

		Filter element design - H-U Series											
Filter series	Length	A03 A06 A10 A16 A25											
FZX 011	3	1.57 1.63 1.73 1.74 1.77											

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

6

Flow rate I/min

0

2

Hydraulic symbols

Pressure drop Filter housings ∆p pressure drop

10

8

Designation & Ordering code

COMPLETE FILTER													
Filte	r series and size	Configuration example:	FZX011	3	S	V	В	1	A	03	U	P01	
FZX)11	• · ·											
Filto	r length												
3													
Dung													
C DAbs	Without hypass												
5													
Seal	S NRR												
N N	FPM												
F	MEQ												
-													
Conr	700 bor												
A	G 1/4"												
B	1/4" NPT												
G	G 1/2"												
H	1/2" NPT"												
	Autoclave 1000 bar												
М	9/16" - 18 UNF												
L	3/4" - 14 NPS												
Conr	nection for differential indicators												
1	Without connection												
Filtra	ation rating (filter media)												
A03	Inorganic microfiber 3 µm												
A06	Inorganic microfiber 6 µm												
A10	Inorganic microfiber 10 µm										_		
A16	Inorganic microfiber 16 µm												
A25	inorganic microfiber 25 µm												
Elem	nent Δp								Exec	ution			
H	210 bar								P01	MP Filt	ri stan	dard	
U	210 bar, stainless steel filter element								Рхх	Custon	nized		

	FILTER ELEMENT
Element series and size HP011	Example: HP011 3 A03 V U P01
Element length 3	▲
Filtration rating (filter media) A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm A25 Inorganic microfiber 25 μm	
Seals A NBR V FPM F MFQ	· · · · · · · · · · · · · · · · · · ·
Element Δp H 210 bar U 210 bar, stainless steel filter element	Execution P01 MP Filtri standard Pxx Customized

FZX011 FZX

Order number for spare parts

FZX 011

	Q.ty: 1 pc.	Q.ty:	1 pc.								
Item:	2	3 (3a ÷ 3c)									
Filter series	Filter element	Seal Kit co NBR	de number FPM								
FZX 011	See order table	02050643	02050644								

FZM general information

Description

Technical data

Stainless steel high pressure filters

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZM is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the top of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø15 mm, for a maximum flow rate of 70 l/min
- ISO 4401 CETOP 3 and CETOP 5 interface, for direct mounting on the CETOP valves.
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
 Optional FPM
- series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZM filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- Core tube: I inned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series			Weights	s [kg]		Volumes [dm ³]							
	Length					Length							
FZM 039		-	5.0	5.6	6.1		-	0.19	0.26	0.34			

GENERAL INFORMATION FZM

FILTER ASSEMBLY SIZING

F	low	rates	[I/	mi	n
---	-----	-------	---	----	----	---

			Filter elem	ent design	- R Series			Filter eleme	ent design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	41	47	54	19	23	39	43	51
FZM 039	3	33	36	50	56	65	30	33	45	49	60
	4	41	44	58	64	70	37	39	51	63	68

Maximum flow rate for a complete stainless steel high pressure filter with a return drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop Filter housings ∆p pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

FZM FZM039

Designation & Ordering code

	CON	iplete f	ILTER										
Series and size	Configuratio	on example:	FZM039	2		S	Α	Μ		1	A10	H	P01
FZM039											\square		
Length													
2 3 4	_												
Rynass valve													
S Without bypass													
B With bypass 6 bar	-												
	-												
Seals													
A NBR	_												
V FPM	-												
F MFQ	_												
O													
Connections Manifold													
	_												
Connection for differential indicator													
1 Without connection													
2 With connection	-												
	-												
Filtration rating (filter media)													
A03 Inorganic microfiber 3 µm	_												
A06 Inorganic microfiber 6 μm	_												
A10 Inorganic microfiber 10 μm	_		ſ										
A16 Inorganic microfiber 16 µm	-												
A25 Inorganic microfiber 25 µm	-							Valv	/es				
	Elei	ment ∆p 20 bor						S	В		ecution	iltri et	andard
	<u>ה</u> כ	20 Jai 210 har						•	-	Pv	v Cuet	nui Sti omizer	1
	<u> </u>	210 bar 210 har	stainless	steel fi	lter el	ement		•	•	1 ^	n Ousi	0111200	<i>а</i>

	FILTER ELEN	IENT	
Element series and size		Configuration example: HP039 3 A	A10 A S P01
HP039			
Flowert longth	1		
2 3 4			
Filtration rating (filter media)			
A03 Inorganic microfiber 3 µm			
A06 Inorganic microfiber 6 µm			
A10 Inorganic microfiber 10 µm			
A16 Inorganic microfiber 16 µm			
A25 Inorganic microfiber 25 µm			
	Seals	Element ∆p	Execution
	A NBR	R 20 bar	P01 MP Filtri standard
	V FPM	S 210 bar	Pxx Customized
	F MFQ	U 210 bar, stainless steel filter element	

ACCESSORIES

Differential indicators

DEX Electrical differential indicator

DLX Electrical / visual differential indicator

Additional features X2 Plug DVXVisual differential indicatorDVYVisual differential indicator

Order number for spare parts

FZM 039 (3n) (3h) 6 $(\subseteq$ 6 \bigcirc (3e) (3d) 4 -(3a) (3b) (3c) 2 Q.ty: 1 pc. Q.ty: 1 pc. Q.ty: 1 pc. Item: 2 **3** (3a ÷ 3n) 4 Filter Filter Seal Kit code number NBR FPM Indicator connection plug NBR FPM See order table series FZM 039 02050651 02050652 X2H X2V

FZB GENERAL INFORMATION

Description

Technical data

staini	000	etaal	high	nraeeura	tiltore
Jiann	600	31661	IIIGH	pressure	

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZB is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the side of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø16 mm, for a maximum flow rate of 70 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZB filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series			Weights	s [kg]			Volumes [dm ³]							
	Length					Length								
FZB 039		-	4.6	5.2	5.7			-	0.19	0.26	0.34			

GENERAL INFORMATION FZE

FILTER ASSEMBLY SIZING

Flow rates [I/min]

		Filte	r elemei	nt desig	n-RS	eries	Filte	eries	Filter element design - U Series							
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	18	23	39	44	52	18	22	37	40	48	18	22	37	40	48
FZB 039	3	31	33	47	54	65	28	31	43	46	84	28	31	43	46	84
	4	38	41	56	63	71	34	36	48	62	68	34	36	48	62	68

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop Filter housings ∆p pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

FZB FZB039

Designation & Ordering code

	COMPLETE FILTER		
Series and size	Configuration example: FZB03	39 2 T A F	2 A06 S P01
FZB039			
2 3 4			
Valves			
S Without bypass			
B With bypass 6 bar			
T With check valve, without bypass			
D With check valve, with bypass 6 bar			
Seals			
A NBR			
V FPM			
F MFQ			
Connections			
F Manifold			
Connections for differential indicator			
1 Without connection			
2 With connection on the top			
Filtration rating (filter media)			
A05 Inorganic microfiber 6 um			
A10 Inorganic microfiber 10 um			
A16 Inorganic microfiber 16 µm			
A25 Inorganic microfiber 25 µm	Element An	Valves	Execution
	R 20 bar	- • - •	P01 MP Filtri standard
	S 210 bar	• - • -	Pxx Customized
	U 210 bar, stainless steel	filter element • • • •	

		FILTE	R ELEME	NT										
Element series and size				Со	nfiguration example:	HP039		2	A06		A	S	P	01
HP039	-													
Element length														
2 3 4														
Filtration rating (filter media)														
A05 Inorganic microfiber 5 µm	-													
	-													
A10 Inorganic microfiber 10 µm	_													
A16 Inorganic microfiber 16 µm														
A25 Inorganic microfiber 25 µm	-													
	Seal	ls		Eler	nent ∆p				B	(eci	ution			
	Α	NBR		R	20 bar				PC)1	MP	Filtri :	standa	rd
	V	FPM		S	210 bar				P	x	Cust	tomiz	ed	
	F	MFQ		U	210 bar, stainles	ss steel fi	lter e	eme	nt					

	CLOGGING INDICATORS See page 687							
DEX	Electrical differential indicator	DVY	Visual differential indicator					
DLX	Electrical / visual differential indicator	X2	Plug					
DVX	Visual differential indicator							

FZB039 HZE

FZB spare parts

Order number for spare parts

FZD GENERAL INFORMATION

Description

Stainless steel high pressure filters

Duplex

Maximum working pressure up to 35 Mpa (350 bar) Flow rate up to 60 l/min

FZD is a range of stainless steel high pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 3/4", for a maximum flow rate of 60 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Balancing valve, available for FZD051, to equalize the housing pressure before the switch.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- System where shut-down causes high costs
- System where shut-down causes safety issues

Filter housing materials

- Head: AISI 316L

Technical data

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
 Optional FPM
- series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZD filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weigh	Weights [kg]				Volumes [dm ³]						
	Length						Length					
FZD 010		-	7.9	-	-	-		-	0.10	-	-	-
FZD 021		-	9.6	9.8	10.3	-		-	0.06	0.12	0.22	-
FZD 051		-	17.4	18.0	19.0	20.3		-	0.31	0.41	0.53	0.83

general information FZD

FILTER ASSEMBLY SIZING

Flow rates [l/min]

			Fil	ter elen	nent des	sign - H	I Series				Filter e	element	design	- U Seri	es	
Filter series	Length	A03		A06	A1)	A16	A25		A03	A06		A10	A16		A25
FZD 010	2	4		5	7		8	11		4	5		7	8		11
		-		0			10	10		-						10
	2	5		6	11		12	16		5	6		11	12		16
FZD 021	3	9		11	16		18	20		9	11		16	18		20
	4	10		12	17		19	21		10	12		17	19		21
		Filter	elemen	it desigi	า - RS	eries	Fil	ter elemei	nt des	ign - SS	eries	Filte	r eleme	nt desigr	ı - U S	Series
Filter series	Length	A03	A06	A10	A16	A25	A03	B A06	A10) A16	A25	A03	A06	A10	A16	A25
	2	39	41	51	54	59	35	37	48	51	58	35	37	48	51	58
E7D 0E1	3	45	46	54	56	61	41	43	52	54	60	41	43	52	54	60
	4	50	52	58	58	62	47	49	56	56	61	47	49	56	56	61
	5	56	57	61	62	63	53	53	57	59	63	53	53	57	59	63

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. △p varies proportionally with density.

Designation & Ordering code

			COMPLETE FILTE	R										
Series	s and size		Configuration examp	e: FZD021	4		S	A		G1		06	Η	P01
FZD0 ⁻	10 FZD021													
Longt	h	E7D010 E7D021												
2		• •												
3		- •												
4		- •												
Вура	ss valve													
5	without bypass													
Seals														
A N	NBR													
VF	FPM													
Conne	ections FZD010	FZD021												
G1	G 3/8"	G 1/2"												
G2	3/8" NPT	1/2" NPT												
G3	-	SAE 8 - 3/4" - 16 UNF												
Filtrat	tion rating (filter media)													
A03	Inorganic microfiber	3 um]		
A06	Inorganic microfiber	<u> </u>												
A10	Inorganic microfiber	10 µm												
A16	Inorganic microfiber	16 µm												
A25	Inorganic microfiber	25 µm	3	ement ∆p							xecu	tion _		
			н	210 bar						P	01	MP Fil	tri sta	ndard
			U	210 bar, s	tainless	steel	filter	⁻ eler	ment	P	xx	Custo	nizec	

				FILTER ELEN	IENT								
Element series and size					С	configuration example:	HP011	4	A06		4	H	P01
	FZD010	FZD021											
HP010	•	-											
HP011	-	•											
Element length	HP010	HP011											
2	•	•											
3	-	•											
4													
Filtration rating (filter media)													
A03 Inorganic microfiber		3 µm											
A06 Inorganic microfiber		6 µm											
A10 Inorganic microfiber		10 µm		[
A16 Inorganic microfiber		16 µm											
A25 Inorganic microfiber		25 µm				Γ							
			0								1 [*]		
			<u>5ea</u>	NBR	H	ement ∆p 210 bar			PO	(861) 1	uon MP Filtr	i stanc	lard
			v	FPM		210 bar stainles	s steel filte	eleme	ent Px	x	Custom	ized	<u></u>
			-		<u> </u>	210 bal, otaliliot		oronne			ouotom	1200	

CLOGGING INDICATORS						
DEX	Electrical differential indicator	DVY	Visual differential indicator			
DLX	Electrical / visual differential indicator	X2	Plug			
DVX	Visual differential indicator					

() MPALTRI

FZD fzd010 - fzd021

EXAMPLE FZD051

		COM	PLETE FILTER										
Serie	s and size	Cor	figuration example:	FZD051	3		B	А	Ga	3 A	.03	U	P01
FZDO	51	_											
Long	łh												
2													
		_											
Bvp	ass valve												
S	Without bypass												
В	With bypass 6 bar	-											
		_											
Seals	3												
Α	NBR	_											
V	FPM	_											
Conr	ections												
G1	G 3/4"												
G2	3/4" NPT	_											
G3	G 1/2"	_											
G4	1/2" NPT	_											
G5	SAE 8 - 3/4" - 16 UNF												
G6	SAE 12 - 1 1/16" - 12 UN	_											
		-											
Filtra	tion rating (filter media)												
AU3	Inorganic microfiber 6 um	<u> </u>											
AU0 A10	Inorganic microfiber 10 µm	<u> </u>											
A10 A16	Inorganic microfiber 16 µm	<u>1</u> 1						Valve	s				
Δ25	Inorganic microfiber 25 um	Eler	nent ∆p					S I	B	Execu	ution		1
<u>7720</u>		<u> </u>	20 bar					-	•	P01	MP Fil	tri stan	dard
		S	210 bar					•		Pxx	Custor	nized	
		U	210 bar, stain	less steel fil	ter elei	ment		•	•				

DUPLEX

CLOGGING INDICATORS Set							
DEX	Electrical differential indicator	DVY	Visual differential indicator				
DLX	Electrical / visual differential indicator	X2	Plug				
DVX	Visual differential indicator						

Filter H length [mm] 2 253 3 295 4 343 5 465 Connections R G1 M6 G2 1/4" U G3 M6 G4-65-G6 1/4" U S 168 B 182.5] NC NC L1 mm] 38 52.5
V Pure delation of the second delatance space for maintenance space fo	
R - depth 7 mm Nr. 4 holes VENT VENT VENT VENT 84 130	

FZD SPARE PARTS

Order number for spare parts

FZD 010		FZD 021 - FZD 051
Item: Filter series FZD 010	Image: Constraint of the second sec	dicator connection plug NBR FPM
FZD 021 FZD 051	table 02050800 02050801	

Clogging indicators

Introduction

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

These devices trip when the clogging of the filter element causes an increase in pressure drop across the filter element.

The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals.

Suitable indicator types

DIFFERENTIAL INDICATORS

Differential indicators are used on the Pressure line to check the efficiency of the filter element. They measure the pressure upstream and downstream of the filter element (differential pressure). Standard items are produced with special connection G 1/2" size. Also available in Stainless Steel models.

Quick reference guide

Filter family	Filter serie	Filter series		Electrical indicators	Electrical / Visual indicators	
s steel Re filters	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01		
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01		
STAINLES HIGH PRESSI	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01	
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01	

())) MPALTRI

DIFFERENTIAL INDICATORS

Designation & Ordering code

	DESIGNATION &	ORDERING	CODE - DIFFI	ERENTIA	L INDIC	CATORS	5					
Seri	99		Configuration e	example 1:	DE	Z	Ę	50	Н	Α	50	P01
DE	Electrical differential indicator		Configuration	vamnle 2.				70	V	Δ	52	P01
DL	Electrical / Visual differential indicator		oonnguradon e							L <u>A</u>		
DV	Visual differential indicator											
Тур	e <u>DE DL</u>											
<u>×</u>	Standard type	-										
<u> </u>	100 bar • •	•										
Y	Optional type	•										
Pres	ssure setting											
50	5.0 bar											
70	7.0 bar											
95	9.5 bar											
Sea	ls											
H	HNBR											
V	FPM											
The	rmostat											
Α	Without thermostat											
Elec	trical connections		DEX DE	ZDL	DV							
48	Connection via three-core cable - fitting M20x1.5			-	-							
49	Connection via four-core cable - fitting 1/2" NPT			-	-							
50	Connection EN 175301-803		• •		-							
51	Connection EN 175301-803, transparent base with lamp	os 24 Vdc		•	-							
52	Connection EN 175301-803, transparent base with lamp	os 110 Vdc		•	-							
70	Connection IEC 61076-2-101 D (M12)			-	-				0p	otion		
									<u>P0</u>		' Filtri sta	andard
									PX	x Cu	stomized	1

DESIGNATION & ORDERING CODE - DIFFERENTIAL INDICATOR PLUG

Series		Configuration example X2	Н
X2	Indicator plug 420 bar		
Х3	Indicator plug 700 bar (only for FZH)		
Se	als		
H	HNBR		
V	FPM	-	
F	MFQ	-	

MPALTRI' -
