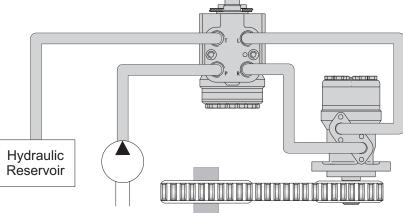

HYDRAULIC MOTORS MRNA


APPLICATION

- » Actuator motor as driving-motor for steering mechanism of the the three-wheel vehicles;
- » For conveyors (series connection);
- » Dosing motor etc.

MRNA is suitable for driven mechanism where smooth operation low speed and high pressure is demanded. It is designed with separated output shaft and spool valve and can be specified with low internal leakage.

- » Good start-up characteristics;
- » Precise control of the Torque at low small flow.
- » Smooth operation at high pressure and small oil flow;
 - » High volumetric efficiency.

The main technical features correspond to the standard motors series MR ø28,56 [1.124 in.] sealing diameter. There are no changes in the overall and mounting dimensions. For detailed technical and mounting data please refer to MR catalogue.

SPECIFICATION DATA

Code Cemen		Max. Speed [RPM]		daNm	orque [lb-in] SH, SA			Max. C kW [shafts	HP]	A shafts	Dr	op, ba	essure a r [PSI SH, SA]	Max. Oil Flow, Ipm [GPM]
	[in³/rev]	cont.	cont.	int*	cont.	int*	cont.	int*	cont.	int*	cont.	int*	cont.	int*	cont.
MRNA 50	51,5 [3.14]	200	10 [885]	13 [1150]	10 [885]	13 [1150]	2,0 [2.68]	2,5 [3.35]	2,0 [2.68]	2,5 [3.35]	140 [2030]	175 [2540]	140 [2030]	175 [2540]	10,5 [2.8]
MRNA 80	80,3 [4.9]	200	20 [1770]	22 [1940]	20	22 [1940]	3,0	3,5	3,0	3,5	175 [2540]	200 [2900]	175 [2540]	200 [2900]	16
MRNA 100	99,8 [6.09]	200	24 2120	28 [2480]	24 2120	28 [2480]	4,5 [6.03]	5,0 [6.71]	4,5 [6.03]	5,0 [6.71]	175 [2540]	200 [2900]	175 [2540]	200 [2900]	20 [5.3]
MRNA 125	125,7 [7.67]	200	30 [2650]	34 [3000]	30 [2650]	34 [3000]	5,5 [7.37]	6,0 [8.05]	5,5 [7.37]	6,0 [8.05]	175 [2540]	200 [2900]	175 [2540]	200 [2900]	25
MRNA 160	159,6 [9.74]	200	29	39	39	43 [3800]	5,0	6,5	6,0	7,5 [10.05]	120 [1740]	175 [2540]	175 [2540]	200 [2900]	32 [8.5]
MRNA 200	199,8 [12.19]	200	29 [2560]	38,5 [3400]	38,5 [3400]	46 [4070]	5,0 [6.71]	7,0 [9.39]	6,5 [8.72]	9,0 [12.06]	105 [1520]	140 [2030]	140 [2030]	175 [2540]	40 [10.5]
MRNA 250	250,1 [15.26]	200	30 [2650]	39 [3450]	39 [3450]	47 [4160]	5,0 [6.71]	7,0 [9.39]	6,0 [8.05]	9,0 [12.06]	80 [1160]	110 [1600]	110 [1600]	140 [2030]	50 [13.2]
MRNA 315	315,7 [19.26]	190	30 [2650]	42 [3720]	36 [3450]	47 [4160]	5,0 [6.71]	7,5 [10.05]	6,0 [8.05]	8,5 [11.4]	70 [1020]	100 [1450]	85 [1230]	115 [1670]	65
MRNA 400	397,0 [24.4]	150	30	40	38	47 [4160]	4,0	6,5	6,0	7,0	55 [800]	70 [1015]	65 [940]	90 [1300]	60

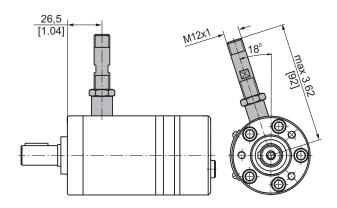
^{*} Intermittent operation: the permissible values may occur for max. 10% of every minute.

MOTOR SPECIAL FEATURES

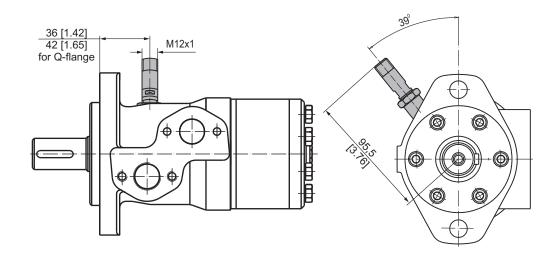
		Motor type												
Special Feature Description	Order Code	MM	MP	MP(W)N, MRN	MPW	MR	MRB	SP, SR	PL, RL	PK, RK	PKQ	RW	МН	МН
Speed Sensor*	RS	0	0	-	-	0	-	-	-	-	-	-	0	-
Tacho connection	Т	-	-	-	-	О	-	-	-	-	-	-	0	-
Low Leakage	LL	0	0	-	0	0	-	-	0	0	0	0	0	0
Low Speed Valving	LSV	-	-	-	0	0	-	-	-	-	0	0	0	0
Free Running	FR	0	0	-	-	0	-	-	0	0	-	0	0	0
Reverse Rotation	R	0	0	0	0	0	0	0	0	0	0	0	0	0
Paint**	Р	0	0	0	0	0	0	0	0	0	0	0	0	0
Corrosion Protected Paint**	РС	0	0	0	0	0	0	0	0	0	0	0	0	0
Special Paint***	PS	0	0	0	0	0	0	-	0	0	0	0	0	0
	PCS	_		_		-						_		
Check Valves		S	S****	S	S****	S****	S	S	S	S	S	S	S****	S

0	Optional			
-	Not applicable			
S	Standard			

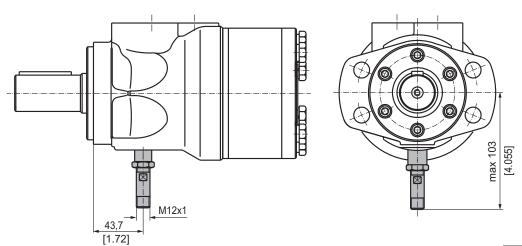
For sensor ordering see pages 120÷121.


^{**} Colour at customer's request.

*** Non painted feeding surfaces, colour at customer's request.


*** Without check valves for "U" shaft seal versions.

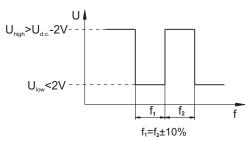
MOTORS WITH SPEED SENSOR -


MM...RS

MP...RS and MR...RS

MH...RS

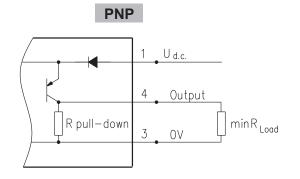
TECHNICAL DATA OF THE SPEED SENSOR

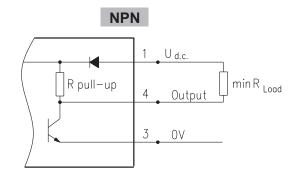

Technical data

Frequency range 0...15 000 Hz
Output PNP, NPN
Power supply 10...36 VDC
Current input 20 mA (@24 VDC)

Ambient Temperature -40...+125°C [-40...+257°F]

Protection IP 67
Plug connector M12-Series
Mounting principle ISO 6149

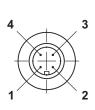

Output signal



Load max.:I_{high}=I_{low}<50mA

Motor type	MM	MP	MR	MH
Pulses per revolution	30	36	36	42

Wiring diagrams



 $R_{Load}[k\Omega]=U_{d.c.}[V]/I_{max}[mA]$

Stick type

Order Code for Speed Sensor

Terminal No.	Connection	Cable Output		
1	U _{d.c.}	Brown		
2	No connection	White		
3	0V	Blue		
4	Output signal	Black		

Sensor Code	Output type	Electric connection	
RSN	NPN	Connector BINDER 713 series	
RSP	PNP	Connector BINDER 713 series	
RSNL5	NPN	Cable output 3x0,25; 5 m [196 in] long	
RSPL5	PNP	Cable output 3x0,25; 5 m [196 in] long	

NOTE: *- The speed sensor is not fitted at the factory, but is supplied in a plastic bag with the motor. For installation see enclosed instructions.

APPLICATION CALCULATION

VEHICLE DRIVE CALCULATIONS

1.Motor speed: n, RPM

$$n = \frac{2,65 \times V_{km} \times i}{R_m}$$

$$n = \frac{168 \times V_{ml} \times i}{R_{in}}$$

v_{km}-vehicle speed, km/h;

v_{ml}-vehicle speed, mil/h;

R_m-wheel rolling radius, m;

R_{in}- wheel rolling radius, in;

i-gear ratio between motor and wheels.

If no gearbox, use i=1.

2.Rolling resistance: RR, daN [lbs]

The resistance force resulted in wheels contact with 5.Tractive effort: DP.daN[lbs] different surfaces:

$$RR = G \times \rho$$

G- total weight loaded on vehicle, daN [lbs]; ρ-rolling resistance coefficient (Table 1).

Table 1

Rolling resistance coefficient In case of rubber tire rolling on different surfaces						
Surface	ρ					
Concrete- faultless	0.010					
Concrete- good	0.015					
Concrete- bad	0.020					
Asphalt- faultless	0.012					
Asphalt- good	0.017					
Asphalt- bad	0.022					
Macadam- faultless	0.015					
Macadam- good	0.022					
Macadam- bad	0.037					
Snow- 5 cm	0.025					
Snow- 10 cm	0.037					
Polluted covering- smooth	0.025					
Polluted covering- sandy	0.040					
Mud	0.037÷0.150					
Sand- Gravel	0.060÷0.150					
Sand- loose	0.160÷0.300					

3. Grade resistance: GR, daN [lbs]

$$GR=G \times (\sin\alpha + \rho \times \cos\alpha)$$

α-gradient negotiation angle (Table 2)

Table 2

Grade %	lpha Degrees	Grade %	α Degrees
1%	0° 35'	12%	6° 5'
2%	1º 9'	15%	8° 31'
5%	2° 51'	20%	11° 19'
6%	3° 26'	25%	14° 3'
8%	4° 35'	32%	18°
10%	5° 43'	60%	31°

4. Acceleration force: FA, daN [lbs]

Force FA necessary for acceleration from 0 to maximum speed v and time t can be calculated with a formula:

$$FA = \frac{V_{km} \times G}{3.6 \times t}, [daN] \qquad FA = \frac{V_{ml} \times G}{22 \times t}, [lbs];$$

$$FA = \frac{V_{ml} \times G}{22 \times t}, [lbs];$$

FA-acceleration force, daN [lbs]; t-time, [s].

Tractive effort DP is the additional force of trailer. This value will be established as follows:

-acc.to constructor's assessment:

-as calculating forces in items 2, 3 and 4 of trailer; the calculated sum corresponds to the tractive effort requested.

6.Total tractive effort: TE, daN [lbs]

Total tractive effort **TE** is total effort necessary for vehicle motion; that the sum of forces calculated in items from 2 to 5 and increased with 10 % because of air resistance.

$$TE=1,1x(RR + GR + FA + DP)$$

RR - force acquired to overcome the rolling resistance;

GR- force acquired to slope upwards;

FA- force acquired to accelerate (acceleration force);

DP- additional tractive effort (trailer).

7.Motor Torque moment: M, daNm [in-lb]

Necessary torque moment for every hydraulic motor:

$$M = \frac{TE \times R_{in}[R_{m}]}{N \times i \times h_{M}}$$

N- motor numbers;

η_м-mechanical gear efficiency (if it is available).

8.Cohesion between tire and road covering: Mw, daNm [in-lb]

$$M_{w} = \frac{G_{w} \times f \times R_{in}[R_{m}]}{i \times h_{w}}$$

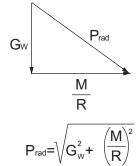
To avoid wheel slipping, the following condition should be observed $M_w > M$

f -frictional factor;

G_w- total weight over the wheels, daN [lbs].

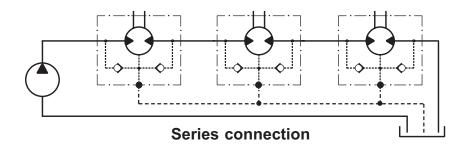
Table 3

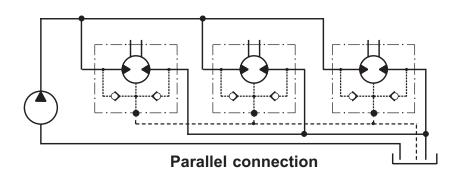
14510 0	
Surface	Frictional factor f
Steel on steel	0.15 ÷ 0.20
Rubber tire on polluted surface	0.5 ÷ 0.7
Rubber tire on asphalt	0.8 ÷ 1.0
Rubber tire on concrete	0.8 ÷ 1.0
Rubber tire on grass	0.4


9.Radial motor loading: Prad, daN [lbs]

When motor is used for vehicle motion with wheels mounted directly on motor shaft, the total radial loading of motor shaft \mathbf{P}_{rad} is a sum of motion force and weight force acting on one wheel.

Prad - Total radial loading of motor shaft;


M/R- Motion force.



In accordance with calculated loadings the suitable motor from the catalogue is selected.

DRAINAGE SPACE AND DRAINAGE PRESSURE

Advantages in oil drainage from drain space: Cleaning; Cooling and Seal lifetime prolonging.

