Controller

ELMP 150-01G24/01

- robust analogue technique
- No spinner feedback signal required
- control of the diffusion

1 Description

The ELMP 150 controller provides simultaneous control of two proportional solenoids (spread width and spread density) in accordance with the steplessly adjustable control settings and with the vehicle speed. The operating controls and status-indicating LEDs are located on the back-lit front panel. The unit requires a 24 V DC or 12 V DC smoothed power supply. The unit is factory-set for 24 V DC but can be easily reset for 12 V DC. The controller offers four operating modes: Spread, Unload, Maximum Spread ("Blast") and Test. In Spread mode the two outputs are driven in accordance with the control settings and the road speed signal. If the road speed signal falls below a threshold value, the
spread density output is cut off. In Unload mode the spread density control setting is ignored and the output goes to maximum, and the spread width output goes to zero. In Ma-ximum Spread ("Blast") mode either: - the existing spread width output is maintained and the spread density output goes to maximum -or- both outputs go to maximum (de-pendent on jumper setting). In Test mode the outputs are driven in accordance with the control settings together with an in-ternally-simulated road speed signal. As a road signal, either a Impulse-generator or a proximity switch can be used to provide the external road speed signal.

2 Technical data

Electrical characteristics	Description, value, unit
Power supply	12 V to 24 V DC (standard) , smoothed. Ripple < 10\%
No. of outputs	$2 \times$ proportional; $5 \times$ ON/OFF
Adjustable min. current, spread width ($l_{\text {minB }}$)	0,1 A to 1,2 A
Adjustable max. current, spread width ($I_{\text {maxB }}$)	0,6 A to 2,5 A
Adjustable min. current, spread density ($\mathrm{l}_{\text {minD }}$)	0 A to 1,2 A
Adjustable max. current, spread density ($\mathrm{maxD}^{\text {max }}$)	1 A to 2,5 A (but not less than $\mathrm{I}_{\text {minD }}$)
Max. permissible output current ($\mathrm{l}_{\text {zul }}$)	proportional outputs 2,5 A ; ON/OFF outputs 3 A
Dither frequence	set at 100 Hz (rectangular)
Frequency input for road speed signal: maximum input frequency voltage levels at frequency input input impedance of frequency input	80 Hz to 200 Hz optionally 600 Hz to 1500 Hz "Low-Signal" $<5 \mathrm{~V}$; "High-Signal">7,5 V 1 kW or 10 kW after removal of a resistor

BUCHER hydraulics

Electrical characteristics	Description, value, unit
Power supply for NPN pulse emitter (Road speed)	9 V
Max. loading of power supply for NPN pulse emitter	10 mA
Threshold value for road speed signal	$0,15 \mathrm{~V}$ alternatively $0,03 \times \mathrm{f}_{\text {max }}$
Speed simulation voltage (Test mode)	1,4 V to $3,8 \mathrm{~V}$ at frequency input
Notable features	- power supply terminals are reverse-polarity protected; - for the duration of a short circuit, the relevant amplifier switches off automatically;
Enclosure protection	IP30
Operating temperature	$-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Dimensions	approx. $65 \mathrm{~mm} \times 185 \mathrm{~mm} \times 180 \mathrm{~mm}$ (aluminium-housing)
Weight	approx. 1550 g
Connection	Twenty-pin solder plug H-A 16 Sta 20S with housing H-A 16 KAg
cable length and cross-section	For $1 \mathrm{~mm}^{2}$ wire, max. cable length is 10 metres
electro-magnetic compatibility	- EN 14982 radiated emission - ISO 11452--.2..--5 Immunity radiated electromagnetic enercy - ISO/TR 10605 Immunity against discharge static electricity - ISO 7637--.0..--2 Immunity aganst circuit disturbance; class D, A - e1 directive 95/54/EG radiated emissopn caused by vehicles

3 Commissioning

The set-up procedures must be carried out at operating temperature. The two outputs can be set in either order, since they are independent of each other.

1. Connect the controller in accordance with the connection diagram and switch it on.
2. Provide a speed signal (frequency) equivalent to the maximum road speed and set the Test/Operating switch to Operating. Using trimming potentiometer P5, adjust the voltage between test point MP3 and pin 20 (Ground) to 6.5 V (factory setting is 133 Hz ; at 8 impulses per meter of travel, this corresponds to a speed of $60 \mathrm{~km} / \mathrm{hr}$).
3. Set the Unload switch to Unload. Using the trimming potentiometer P9, and adjusting UP to the final value, set the maximum possible auger/belt speed
4. Switch off the Unload switch. Set the spread width control to maximum. Using the trimming potentiometer P7, and adjusting UP to the final value, set the maximum spinner speed.
5. Set the spread width to minimum. Using the trimming potentiometer P8, and adjusting DOWN to the final va-lue, set the minimum spinner speed.
6. Set the Test/Operating switch to Operating. Set the spread width and spread density controls to minimum and the road speed to the required minimum. Using the trimming potentiometer P3, adjust the spread density to the required minimum.
7. Set the controls for spread width and spread density to maximum and the road speed to the required maximum. Using the trimming potentiometer P2, adjust the spread density to the required maximum.
8. Repeat steps 6 and 7 until the required accuracy is achieved
9. Set the Test/Operating switch to Test. Using the trimming potentiometer P4, set the test speed to the desired value. The road speed simulation voltage can be checked across the middle pin of potentiometer P4 and terminal 20 (Ground).

The potentiometers that are sealed with colour spots are pre-set in the factory.

4 Connection diagram

5 Block diagram

BUCHER hydraulics

6 Ordering code

7 Accessories

For Road speed, either a Impulse-generator or a proximity switch (NPN or Namur) can be supplied for measuring the travel speed. Connector plugs, type GDM 309, can be use to connect to the solenoids. In the event of proportional valve malfunc-tions that are caused by long power leads, use connector plugs type GDM 209D.

Description	Ordering No.
Solenoid plug GDM 309	100.064970
Solenoid plug GDM 209D	100.014130
Angular momentum sensor DIG 360	100.016803
Proximity switch Bi5-P18-YOX	100.014642
Socket outlet application	100.217331
Socket shell PG 16 straight	100.209521
Socket shell PG 16 lateral	100.607668
Socket shell PG 21 staight	100.607419
Plastic- protective cover for socket shells	100.607750
Plastic-protective cover for mounting	100.607751
case	

For a description of these accessories, see data sheet P70010, "Electronic Accessories".

8 Special models

The controller can be supplied with a different front plate. This can feature other scale divisions and/or a company logo or can be in a different language.

9 Fault finding

9.1 Fault finding - Spinner

BUCHER hydraulics

9.2 Fault finding - Auger/belt

[^0]
[^0]: © 2015 by Bucher Hydraulics GmbH, D-79771 Klettgau
 All rights reserved.
 Data is provided for the purpose of product description only, and must not be construed as warranted characteristics in the legal sense. The information does not relieve users from the duty of conducting their own evaluations and tests. Because the products are subject to continual improvement, we reserve the right to amend the product specifications contained in this catalogue.
 Classification: 470.710.730

