Double check valve pilot-operated, sandwich type Z2S16

NS 16 | p_{max} 35 MPa | Q_{max} 200 dm³/min | WK 450 310

DATA SHEET - OPERATION MANUAL

APPLICATION

Double check valve, pilot operated, sandwich type **Z2S16....** is used for cutting off oil flow in one direction (with a possibility of controlling its opening) and opening free flow in the opposite direction.

The valve is usually used for:

- · unloading the valve that is under pressure
- · preventing load drop in the event of a circuit break
- · preventing creep movements of the blocked receivers.

The valve is used for sandwich mounting (inter-plate) in any working position.

DESCRIPTION OF OPERATION

Double check valve, pilot-operated type **Z2S16...** was made by fitting into one body 1 two pilot-operated check valves 2 and 3 equipped with pre-opening ball valves 4 and 5. In the direction of flow from **A1** to **A** or **B1** to **B** there is a free flow, but from **A** to **A1** or **B** to **B1**, the flow is closed. If there is a flow in the valve e.g. from **A1** to **A**, the piston **6** is moved to the right and pushes the pre-opening ball **5** from its seat, and then the main poppet **3**. The connection from **B** to **B1** is then open. The valve operates in a similar way at flow from **B1** to **B**. Application of pre-opening ball valve causes initial, throttled expansion of the pressurised fluid, which prevents the occurrence of strokes/shocks during control. Pressure loss in lines **A1** or **B1** causes both valves to close. In order to obtain a safe and tight closure of both valves, the **A1** and **B1** lines must be connected with the drain.

TECHNICAL PARAMETERS			
hydraulic fluid	mineral oil		
required fluid cleanliness class	ISO 4406 class 20/18/15		
nominal fluid viscosity	37 mm²/s a temperature 55 °C		
viscosity range	2,8 ÷ 380 mm ² /s		
fluid temperature range (in tank)	recommended 40 ÷ 55 °C; max20 ÷ 70 °C		
ambient temperature range	-20 ÷ 70 °C		
max. working pressure	35 MPa		
cracking pressure	0,1 MPa		
area ratio (valve surface / piston surface)	4:1		
area ratio (ball seat surface / piston surface)	1:4		
weight	6,8 kg		

assembly and operation requirements at: www.operating-conditions.ponar.pl

EXAMPLE OF APPLICATION

OVERALL AND CONNECTION DIMENSIONS

version **Z2S16...**

simplified symbol

side of the element closing the stack

subplate side detailed symbols

version **Z2S16A...**

side of the element closing the stack

SIDE OF THE ELEMENT CLOSING THE STACK

version Z2S16B...

side of the element closing the stack

side of the element closing the stack

PERFORMANCE CURVES

for viscosity of hydraulic fluid ν = 41 mm² /s and temperature t = 50 °C

flow resistance curves

OVERALL AND CONNECTION DIMENSIONS

- positioning pin 2 pcs
- 2.
- 3.
- holes for screws fixing the valve holes for positioning pin o-ring 22,3 × 2,4 4 pcs/set (P, T, A, B) o-ring 10 × 2 3 pcs/set (X, Y, L)
- porting pattern of subplate compliant with ISO 4401; designation **ISO 4401-08-07-0-94** (CETOP08)
- required surface quality of the valve contact surface

HOW TO ORDER

1 nominal size		3 series number		5 further requirements= *
NS16 =	16	series 11 =	11	(to be agreed upon with the Manufacturer)
		(10 ÷ 19) - connection and installation		
2 design version		dimensions unchanged		
with two valves =	Ø			
with valve at A port=	Α	4 sealing		
with valve at B port =	В	NBR (for fluids based on mineral oils)	= Ø	
		FKM (for fluids based on phosphate esters) =	= V	

Ø indicates that the box should be left blank.

The **symbols in bold** are the preferred versions available in short delivery time.

Coding example: **Z2S16-11**

SUBPLATE AND MOUNTING SCREWS

Subplates must be ordered according to data sheet WK 450 788:

G174/01 – threaded connections P, T, A, B – G 1; X, Y, L - G $\frac{1}{4}$

Subplates and mounting screws for mounting the valve: M10 × L* – 10.9 - 4 pcs/set M6 × L* – 10.9 - 2 pcs/set acc. to PN – EN ISO 4762 (PN/M – 82302) delivered on separate order

Tightening torque of the screws:

 $M10 \times L^* - M_d = 62 \text{ Nm}$ $M6 \times L^* - M_d = 12,5 \text{ Nm}$

* - required length of L screws depends on the type and number of elements in the stack.

CONTACT

PONAR Wadowice S.A. ul. Wojska Polskiego 29 34-100 Wadowice tel. +48 33 488 21 00 www.ponar-wadowice.pl